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Abstract
We investigate the influence of a uniform magnetic field on the zero-point
energy of charged fields of two types, namely, a massive charged scalar field
under Dirichlet boundary conditions and a massive fermion field under MIT
boundary conditions. For the first, exact results are obtained, in terms of
exponentially convergent functions, and for the second, the limits for small and
for large masses are analytically obtained also. Coincidence with previously
known, partial results serves as a check of the procedure. For the general case
in the second situation—a rather involved one—a precise numerical analysis
is performed.

PACS numbers: 11.10.Wx, 04.62.+v, 11.25.Hf

1. Introduction

The Casimir effect [1] is a very fundamental feature common to all quantum field theories,
which arises in particular, as is well known, when there is a departure from the topology of
the ordinary flat spacetime towards non-trivial topologies. It has been studied intensively in
recent years due to its importance in elementary particle physics, cosmology and condensed
matter physics—see [2] for a recent review on the theoretical and experimental aspects of this
effect, and also [3].

Whenever we deal with a confined charged quantum field, it is a natural question to
ask for the influence of external fields on their zero-point oscillations and to investigate its
consequences on the Casimir effect. The influence of external fields on zero-point oscillations
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of unconfined charged bosonic and fermionic fields and the construction of the corresponding
effective field theories (at the one-loop level) is an honourable subject and is linked to the
pioneering works of the 1930s by Heisenberg, Kockel and Euler, Heisenberg and Euler, and
Weisskopf [4] and of the 1950s by Schwinger [5]. More recently, the influence of a uniform
magnetic field was extensively treated by Dittrich and Reuter in the monograph [6], and
zeta-function techniques were employed to construct effective Lagrangians for scalars and
Dirac fields for d = 2, 3 and higher dimensions in constant background fields (see [7]
and references therein). Ambjorn and Wolfram considered the influence of an electrical
field on the vacuum fluctuations of a charged scalar field [8]. Outside the context of
pure QED, the influence on the vacuum energy density of a real scalar field due to an
arbitrary background of a real scalar field is interpreted as a substitute for hard boundary
conditions (see [9–11]). In the gravitational case, Elizalde and Romeo investigated the
issue of a neutral scalar field in the presence of a static external gravitational field [12]. A
general and valuable discussion of these aspects of quantum field theory can be found in
[13] too.

The influence of external fields on zero-point oscillations of quantum fields confined by
hard boundary conditions, however, has been investigated in some particular cases only. For
example, the influence of a uniform magnetic field on the Casimir effect was investigated
in [14] in the cases of a massive fermion field and a charged scalar field both submitted to
anti-periodic boundary conditions, and in [15] in the case of a massive charged scalar field
submitted to Dirichlet boundary conditions. In the cases considered by these authors it was
formally shown that the fermionic Casimir effect is enhanced by the applied magnetic field
while the bosonic one is inhibited. In [14, 15], Schwinger’s proper-time method [5] was
employed and explicit analytical results obtained for particular regimes of a conveniently
defined dimensionless parameter µ and magnitude of the external field. In the weak magnetic
field regime, some aspects of the material properties of confined charged fields were
investigated in [16].

In this work we wish to resume the investigation of the influence of an external magnetic
field on the zero-point oscillations of charged confined quantum fields and consider the case
of a massive fermion field under a uniform magnetic field and constrained by boundary
conditions of the MIT type, which states that the fermionic current through a hypothetical
confining surface must be zero [17]. This is not an academic question since, for instance,
in the bag model of hadrons [17, 18], we can expect the zero-point oscillations of the
quark fields to be influenced by the strong electric and magnetic fields that permeate the
interior of the hadronic bag (see, for example, [19] and references therein). We also wish
to reconsider the case of a massive charged scalar field under a uniform magnetic field
by investigating regimes not considered in [15]. In order to evaluate the relevant Casimir
energies, it is convenient, especially in the case of the massive fermion field with MIT
boundary conditions, to follow the spirit of the representation of spectral sums as contour
integrals [20], which allows for the incorporation of the boundary conditions in a smooth
way. Here we will employ a relatively simple variant of this general procedure. This
variant is described in [21] and it will be applied here without further explanation to the
cases at hand (an interested reader should consult that paper for details). The outline
of this work is as follows. In section 2 we apply our calculational tools to the charged
scalar field case. In section 3, we consider the case of the charged fermion field. For
both cases, detailed numerical analysis and some special analytical limits are provided,
together with an explanation of the results obtained and specific comparisons with other
results. Section 4 is devoted to final remarks. Throughout the paper we employ natural units
(h̄ = c = 1).
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2. The vacuum energy of a charged scalar field with Dirichlet boundary conditions and
under the influence of a uniform magnetic field

Let us first briefly consider a charged scalar field under Dirichlet boundary conditions imposed
on the field on two parallel planes separated by the distance � whose side L satisfies the
condition L � �. Suppose initially that there is no external field. The unregularized Casimir
energy is given by [21]4

E0(�, µ) = α
L2

(2π)3

∫
d3p log

[
1 +

K1(z)

K2(z)

]
(1)

where K1(z) and K2(z) are functions constructed from the boundary conditions as described
in [21]. The dimensionless parameter α takes into account the internal degrees of freedom of
the quantum field. For Dirichlet boundary conditions we begin by writing

F(z) = sin z. (2)

Since z = 0 is a root of F(z) we divide this function by z, thus removing z = 0 from the set
of roots without introducing a new singularity: this is equivalent to removing the zero mode.
Define

G(z) = sin z

z
. (3)

The function K(z) = K1(z) + K2(z), with K1(z) = K2(−z), is then obtained by performing
the substitution z → iz, that is

K(z) := G(iz) = ez − e−z

2z
(4)

where z is the function

z = z(p1,p2, p3) = �

√
p2

1 + p2
2 + p2

3 + m2. (5)

Since K1(z) = −e−z/2z and K2(z) = ez/2z we have

E0(�, µ) = α
L2

2

∫
d3p

(2π)3
log[1 − e−2z]. (6)

To shorten these initial steps let us set m = 0. Then after expanding the log, we obtain, simply,

E0(�) = − αL2

4π2�3

∞∑
k=1

1

k

∫ ∞

0
dx x2 e−2kx (7)

where we have defined x := p3�. The integral can be evaluated with the help of the Mellin
transform

A−s�(s) =
∫

dt t s−1 e−At (8)

and after simple manipulations we obtain the well-known result

E0(�) = −αL2π2

1440�3
. (9)

For α = 2 we get the result valid for photons. A more complex example of the usefulness of
equation (1) is provided in [21].

Let us consider now the same type of field and boundary conditions in the presence of an
external magnetic field which we suppose to be uniform and perpendicular to the two Dirichlet
4 Note that in the absence of external fields we could have started from equation (21) in [21], but for our purposes
here it is more convenient to start from equation (18).
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planes. We will also assume that eB points towards the positive OX3 direction. Equation (1)
now reads

E0(�, µ, eB) = α

(
eB

2π

)
L2

2

∞∑
n=0

∫ ∞

−∞

dp3

2π
log[1 − e−2z] (10)

where we have taken into account that for a charged spin-zero boson the Landau levels are
given by

p2
1 + p2

2 = eB(2n + 1) n = 0, 1, 2, 3, . . . . (11)

The factor eB/2π is the degeneracy factor and for a charged scalar field α = 2. Hence, the
function z now reads

z = z(p3, n) :=
√

�2p2
3 + eB�2(2n + 1) + µ2 (12)

where µ := �m. It is convenient to define

Mn :=
√

(2n + 1)eB�2 + µ2 (13)

and write

E0(�, µ, eB) = eBL2

2π2�

∞∑
n=0

In(Mn) (14)

where

In(Mn) =
∫ ∞

0
dx log

[
1 − e−2

√
x2+M2

n

]
(15)

and we have set x := p3�. Expanding the log and introducing the variable ω, defined by
ω := √

x2 + M2
n , we end up with

E0(�, µ, eB) = eBL2

2π2�

∞∑
n=0

∞∑
k=1

1

k
Ikn(Mn) (16)

where

Ikn(Mn) :=
∫ ∞

Mn

dω ω(ω + Mn)
−1/2(ω − Mn)

−1/2 e−2kω. (17)

In order to evaluate this integral, we first introduce an auxiliary integral defined by

Ikn(Mn, λ) :=
∫ ∞

Mn

dω (ω + Mn)
−1/2(ω − Mn)

−1/2 e−2kωλ. (18)

To evaluate the auxiliary integral we make use of (cf formula 3.384.3 in [22])∫ ∞

µ1

dx (x + β)2ν−1(x − µ1)
2ρ−1 e−µ2x = (µ1 + β)ν+ρ−1

µ
ν+ρ

2

exp

[
(β − µ1)

2
µ2

]

× �(2ρ)Wν−ρ,ν+ρ− 1
2
(µ1µ2 + βµ2) (19)

which holds for µ1 > 0, |Arg (β + µ1)| < π, Re µ2 > 0 and Re ρ > 0. The auxiliary integral
then reads

Ikn(Mn, λ) = (2µ)−1/2

(2kλ)1/2
�(1/2)W0,0(4kMnλ) (20)

where Wµ,λ(z) is the Whittaker function [23]. The Whittaker W0,0(z) function is related to
the modified Bessel function of the third kind through [22]

W0,0(4kMnλ) = (4kMnλ)1/2

π1/2
K0(2kMnλ). (21)
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Figure 1. Plot of the energy in terms of the dimensionless quantity b (=eB�2) corresponding to
the magnetic field, for a fixed value of the dimensionless mass µ (here µ = 1). (a) shows in detail
the formation of a smooth minimum and its precise value.

Taking the derivative of equation (20) with respect to λ, and setting λ = 1 to obtain Ikn(Mn),
we have

Ikn(Mn) = 2Mn

d

dz
K0(z = 2kMnλ)|λ=1 = −MnK1(2kMn). (22)

Hence the vacuum energy reads

E0(�, µ, eB) = −eBL2

2π2�

∞∑
n=0

Mn

∞∑
k=1

1

k
K1(2kMn) (23)

or, more explicitly,

E0(�, µ, eB) = −eBL2

2π2�

√
eB�2 + µ2

∞∑
k=1

1

k
K1

(
2k

√
eB�2 + µ2

)

− eBL2

2π2�

∞∑
n=1

√
(2n + 1)eB�2 + µ2

∞∑
k=1

1

k
K1

(
2k

√
(2n + 1)eB�2 + µ2

)
. (24)

This representation is an alternative to that obtained in [15]. In a very strong field, such that
eB�2 � µ2, the decaying exponential behaviour of the Bessel functions of the third kind
allows us to keep only the term corresponding to k = 1 in the first parcel of the vacuum energy
and, thus, in this limit we have

E0(�, eB)

L2
≈ − (eB�2)5/4

π3/2�3
e−2

√
eB�2

(25)

in agreement with [15]. Note that for zero magnetic field the vacuum energy as given by
equations (24) and (25) is zero, that is, the zero of the energy is automatically shifted with
respect to the vacuum energy in the absence of the external field (which serves, therefore, as
the natural origin of energies).

2.1. Numerical analysis for the scalar case

For arbitrary values of the parameter µ and of the scaled field eB�2, a numerical evaluation
of equation (23) is still possible. The graphs of figures 1(a), (b), 2 and 3 exhibit some
representative examples.

In the first two graphs (figure 1) we plot a dimensionless version of equation (23) as a
function of the scaled magnetic field b := eB�2, for µ = 1 and a convenient range of b that
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Figure 2. Plot of the energy in terms of the dimensionless mass µ, for a fixed value of the
dimensionless magnetic field b (here b = 1). For a wide range of values of b one gets a curve with
a similar shape.
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Figure 3. Plot of the energy in terms of the dimensionless variable t = b/µ2 that measures the
magnitude of the dimensionless magnetic field b in terms of the dimensionless mass µ2. It is clear
that at µ = 1 we recover the same shape as in figure 1.

clearly shows the behaviour of the energy (figure 1(b)). Note that initially the external field
decreases the value of the vacuum energy up to a certain value of b for which the vacuum
energy attains a minimum (which is most clearly depicted in figure 1(a)). After reaching this
point, the energy increases as remarked in [15]. This situation is the opposite of what happens
with a fermionic field, in which case the energy decreases linearly with b, for large values of
b (as will be clearly seen in the next section).

Figure 2 shows the behaviour of the energy in terms of the mass µ for a fixed value of the
magnetic field b (chosen here as b = 1, but the shape of the curve is very similar for a wide
range of values of b). It starts at a nonzero value, for zero magnetic field. Also this is quite
different from the behaviour in the case of a fermionic field.

Finally, in figure 3 the energy is depicted versus the variable t = b/µ2 that measures the
magnitude of the dimensionless magnetic field b in terms of the dimensionless mass µ2. Note
that, although for µ = 1 we obtain the same curve as in figure 1, for any other value of µ

the precise shape of figure 3 is valuable, as a way of representing the energy in terms of the
unique quantity t (the magnetic field in units of mass squared).

Families of curves corresponding to different values of one of the variables, and also
two-dimensional graphs, are easy to obtain in a reasonable amount of time, from our formulae
in this section.

3. Confined fermion field in a uniform magnetic field

As in the case of the charged bosons, the uniform magnetic field here is perpendicular to the
(hypothetical) parallel MIT constraining surfaces. The distance between them is � and eB is
again supposed to point towards the positive OX3 direction. The starting expression reads
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E0(�, µ, eB) = −2 × 1

2

(
eBL2

2π

) ∞∑
n=0

∑
α∈{−1,1}

Inα (26)

where the multiplicative factor 2 takes into account the particle and anti-particle states, and
we have defined

Inα :=
∫ ∞

−∞

dp3

2π
log

[
1 − z − µ

z + µ
e−2z

]
(27)

where again (with µ := �m)

z = z(q, n, α) :=
√

�2p2
3 + (2n + 1 − α)eB�2 + µ2 n = 0, 1, 2, 3, . . . . (28)

Expanding the log as before, we obtain

log

[
1 − z − µ

z + µ
e−2z

]
=

∞∑
k=1

(−1)k+1

k
[z + µ]−k[z − µ]k e−2kz (29)

and performing the sum over α, we arrive at

E0(�, µ, eB) = −2
eBL2

2π2�

∞ ′∑
p=−1

∞∑
k=1

(−1)k+1

k
Ipk(Mp) (30)

where

Ipk(Mp) :=
∫ ∞

0
dx

[(
x2 + M2

p

)1/2
+ µ

]−k [(
x2 + M2

p

)1/2 − µ
]k

e−2k(x2+M2
p)

1/2

(31)

with x := p3� and

M2
p := 2(p + 1)eB�2 + µ2 p = −1, 0, 1, 2, 3, . . . . (32)

The prime in equation (30) means that the term corresponding to p = −1 must be multiplied
by the factor 1/2. Let us define, as before, a new variable ω through ω = (

x2 + M2
p

)1/2
. Then

Ipk(Mp) =
∫ ∞

Mp

dω ω(ω + Mp)−1/2(ω − Mp)−1/2(ω + µ)−k(ω − µ)k e−2kω. (33)

The integral defined by equation (33) is non-trivial. Here we will solve it analytically in two
limits, namely: the large- and the small-µ limits. A numerical integration of equation (33),
however, is feasible to conveniently complete the analysis. We will show the results later.

3.1. The limit µ � 1

If we set µ ≈ 0 we have to solve a much simpler integral for Ipk(Mp). In fact,

Ipk(Mp) =
∫ ∞

Mp

dω
ω e−2kω√
ω2 − M2

p

. (34)

This integral can be evaluated with the help of (cf formula 3.365.2 of [22])∫ ∞

a

x e−bx

√
x2 − a2

= aK1(ab) a > 0 Re a > 0. (35)

For a = 0 this integral reads∫ ∞

0
e−bx = 1

b
(36)
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as can easily be seen by recalling that, for z → 0,K1(z) ≈ 1/z. There are three types of
contributions to the vacuum energy: corresponding to p = −1, p = 0 and p = 1, 2, 3, . . . ,

respectively. They read

E0(�, µ ≈ 0, eB) = −eBL2

2π2�

∞∑
k=1

(−1)k+1

k
I−1k − eBL2

π2�

∞∑
k=1

(−1)k+1

k
I0k

− eBL2

π2�

∞∑
p=1

∞∑
k=1

(−1)k+1

k
Ipk (37)

where the integrals in the partial sums are given by

I−1k = 1

2k
(38)

I0k =
√

2eB�2K1
(
2k

√
2eB�2

)
(39)

Ipk =
√

2(p + 1)eB�2K1
(
2k

√
2(p + 1)eB�2

)
. (40)

It follows then that the first sum can be exactly evaluated by using the eta function,
ηR(z) = (1 − 21−s)ζR(s). In fact, we have

∞∑
k=1

(−1)k+1

k
I−1k = π2

24
. (41)

Therefore, the Casimir energy in this limit reads

E0(�, µ ≈ 0, eB) = −eBL2

48�
− eBL2

π2�

∞∑
k=1

(−1)k+1

k

√
2eB�2K1

(
2k

√
2eB�2

)

− eBL2

π2�

∞∑
p=1

∞∑
k=1

(−1)k+1

k

√
2(p + 1)eB�2K1

(
2k

√
2(p + 1)eB�2

)
. (42)

From this result we can easily extract the limit eB�2 � 1. Due to the decaying exponential
behaviour of the modified Bessel function, the leading contribution is given by the first term
in equation (42). Hence

E0(�, µ ≈ 0, eB) ≈ −eBA

48�
eB�2 � 1. (43)

This result has the same sign—and one fourth of the magnitude—of the corresponding problem
with anti-periodic boundary conditions in this same limit [14]. This difference can be readily
understood if we recall that the anti-periodicity length corresponds to 2�, and that the number
of allowed modes is twice the number of modes of the MIT case for massless fermions.
Therefore, the result given by equation (43), in that particular limit, is compatible with that
given in [14].

3.2. The limit µ � 1

In this limit only the term corresponding to p = −1,M−1 = µ, contributes. Therefore, we
have to calculate

I−1k(µ) =
∫ ∞

µ

dω ω(ω + µ)−k−1/2(ω − µ)k−1/2 e−2kω. (44)
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We have learned above the trick to evaluate this integral. One should write the auxiliary
integral

I−1k(µ, λ) :=
∫ ∞

µ

dω (ω + µ)−k−1/2(ω − µ)k−1/2 e−2kωλ (45)

and evaluate it with the help of the formula given by equation (19). The result is

I−1k(µ, λ) = �(k + 1/2)

(4µkλ)1/2
W−k0(4µkλ). (46)

For large values of the argument, the Whittaker function behaves as

Wνµ(z) ≈ zν e−z/2 (47)

hence for µ � 1 we can write

I−1k(µ, λ) ≈ �(k + 1/2)
e−2µkλ

(4µkλ)k+1/2
(48)

and since

I−1k(µ, λ) = − 1

2k

d

dλ

[
�(k + 1/2)

e−2µkλ

(4µkλ)k+1/2

]
λ=1

(49)

we finally have

I−1k(µ, λ) = �(k + 1/2)

22k+2kk+3/2

[
(k + 1/2)

µk+1/2
+

2k

µk−1/2

]
e−2µk. (50)

The vacuum energy in this regime is given by

E0(�, µ � 1, eB) ≈ −eBL2

8π2�

∞∑
k=1

(−1)k+1

22kkk∗5/2
�(k + 1/2)

[
(k + 1/2)

µk+1/2
+

2k

µk−1/2

]
e−2µk (51)

a result that is new and incorporates the first mass corrections.
The most relevant one is the k = 1 term, which yields

E0(�, µ � 1, eB) ≈ − eBL2

32π3/2�

e−2µ

µ1/2
(52)

which is sufficiently small. This is not the same result as that obtained for anti-periodic
boundary conditions though the damping exponential appears in both cases. The factors
multiplying the exponential are different, it must be remembered though that for µ 
= 0 the
MIT and the AP spectra are not comparable. When µ = 0 the MIT and the AP spectra for
each component of the fermion field differ by a factor of 4.

3.3. Numerical analysis for arbitrary mass

For arbitrary values of the mass and the magnetic field or, correspondingly, of their
dimensionless counterparts, µ and eB�2, the integral defined by (33) is very difficult to
evaluate analytically. In fact, even if we give it in terms of hypergeometric functions this
would not improve our knowledge of the dependence of the energy on the mass and the
magnetic field. Fortunately, a numerical analysis based on equation (30) is possible and leads
to very precise, easily understandable results.

To this end, first we rewrite equation (30) in the form

�3E0(t, µ)

L2
= − tµ3

π2

∞ ′∑
p=−1

∞∑
k=1

(−1)k+1

k
Jpk(t, µ) (53)



7412 E Elizalde et al

1 2 3 4
b

-0.004

-0.003

-0.002

-0.001

E0

2 4 6 8 10
b

-0.008

-0.006

-0.004

-0.002

E0

5 10 15 20
b

-0.015

-0.0125

-0.01

-0.0075

-0.005

-0.0025

E0

(a) (b)

(c)

Figure 4. In the fermionic case, a plot of the energy in terms of the dimensionless magnetic field b,
for a fixed value of the dimensionless mass µ (here µ = 1). (a) Details are shown of the formation
of an inflection region and the inflection point, (b) shows the intermediate region and finally,
(c) shows asymptotic behaviour for large values of b.
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Figure 5. Plot of the energy in terms of the dimensionless mass µ. (a) The behaviour for small
mass is shown with the formation of a smooth minimum, which looks much sharper in (b), where
the asymptotic behaviour for large µ is clearly established.

where

Jpk(t, µ) :=
∫ ∞

0
dy [(y2 + 2(p + 1)t + 1)1/2 + 1]−k[(y2 + 2(p + 1)t + 1)1/2 − 1]k

× e−2kµ(y2+2(p+1)t+1)1/2
(54)

with y := x/µ and t = eB�2/µ2.
The result of the numerical evaluation of equation (54) for a sample of values of µ and b is

shown in figures 4 and 5. Figure 4 shows the dependence of the energy on the magnetic field b
for different ranges of this quantity, to better show the inflection region (figure 4(a), low values
of µ), the intermediate region (figure 4(b)) and the asymptotic behaviour for large values of b
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(figure 4(c)). The intermediate region is most interesting, showing a smooth transition from
the case of small magnetic field (with a good zero field limit) to the linear asymptotic behaviour
corresponding to a large field. And this situation is common for any particular value of the
mass µ. The transition is given by a smooth inflection point of nearly horizontal tangent. It
looks like a minimum could almost be formed, but not quite. In figure 5 the dependence of
the energy on the dimensionless mass µ is depicted, showing the behaviour in the region of
small mass (figure 5(a)) and the asymptotic behaviour for large µ (figure 5(b)). Needless to
say, the asymptotic behaviour corresponds to the analytic expressions obtained before. For the
intermediate region we see a smooth behaviour connecting the two regions with a minimum
that is very easily obtained with good precision, for any particular value of b.

The same observations as for the bosonic case can be made here, namely, that the graphs
shown are only a very small sample of those that can easily be obtained from our general
formulae in this section, corresponding to the fermionic case, for different values of the
variables, and including two-dimensional plots. We should warn the reader, however, that the
computation time is now drastically increased.

4. Final remarks

In this paper we have considered the influence of an external uniform magnetic field on the
Casimir energy associated with charged quantum fields confined by hard boundary conditions.
The method employed incorporates, in a relatively simple way, the hard boundary conditions
of the Dirichlet or MIT type imposed, respectively, on a massive bosonic field and a massive
fermionic field plus, for both cases, the effect of the magnetic field, and leads to expressions for
the vacuum energy especially suited for numerical calculations. The analytical and numerical
results show that, in the bosonic case and Dirichlet boundary conditions, the effect of a large,
applied magnetic field is to suppress the vacuum energy, and in the case of a fermionic field
confined in a slab-bag with MIT boundary conditions, the effect of the applied field is to
enhance (in absolute magnitude) the vacuum energy. For small and intermediate values of
the scaled magnetic field, however, a more interesting behaviour of the vacuum energy shows
up. Since here the calculations were performed in the general framework of an effective field
theory, the details of the interaction between the quantum field and the external magnetic
field—represented by the generation of the Landau levels and the hard boundary conditions—
remain hidden. It would be interesting to understand the behaviour of the vacuum energy under
the circumstances considered here in terms of a more fundamental model of the structure of
the confined quantum vacuum.
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